\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(OLD) EXAMINATION - WINTER 2022

Subject Code: 140001
Date:13-12-2022
Subject Name:Mathematics-IV
Time:10:30 AM TO 01:30 PM
Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) If $x_{n}=\cos \frac{\pi}{3^{n}}+i \sin \frac{\pi}{3^{n}}$, then show that
(a) $i\left(x_{1} \cdot x_{2} \cdot x_{3} \ldots x_{\infty}\right)=-1$ and (b) $i\left(x_{0} \cdot x_{1} \cdot x_{2} \ldots x_{\infty}\right)=1$
(b) Find a real root of the equation $x^{3}+4 x^{2}-1=0$ by bisection method correct upto two decimal places.
Q. 2 (a) Find and plot all roots of $\sqrt[3]{8 i} \mathbf{0 7}$
(b) State necessary and sufficient conditions for the function to be analytic. Also Show that $f(z)=|z|$ is not an analytic function.

OR
(b) Define Harmonic function.

Show that the function $u(x, y)=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2} \quad$ is harmonic. Find the conjugate harmonic function v.
Q. 3 (a) Find the bilinear transformation that maps the points $z_{1}=-2, z_{2}=0, z_{3}=\mathbf{0 7}$ 2 onto the points $w_{1}=\infty, w_{2}=\frac{1}{2}, w_{3}=\frac{3}{4}$ respectively.
(b) Evaluate $\int_{C}\left(x-y+i x^{2}\right) d z$, where C is along the line joining from $z=0$ to $z=1, z=1$ to,$=1+i$ and $z=1+i$ to $z=0$.

OR

Q. 3 (a) State Cauchy' o, Htegral formula.

Also Evala de $\oint_{C} \frac{e^{z}}{z(z-1)} d z$, where C is a circle $|z|=2$.
(b) Find tio Laurent's series expansions of $f(z)=\frac{1}{(z+1)(z+3)}$ valid for
(a) $|z|<1$
(b) $1<|z|<3$
(c) $|z|>3$
Q. 4 (a) Using Newton-Raphson method find a root of the equation $x^{3}-3 x-5=$ 0 correct upto four decimal places.
(b) The population of a town in the census is as given in the data. Estimate the population in the year 1996.

Year (x)	1961	1971	1981	1991	2001
Population(y) (in thousands)	46	66	81	93	101

Q. 4 (a) Compute the integral $I=\int_{0}^{4}\left(x^{3}-2 x^{2}+1\right) d x$ using Simpson's $1 / 3$ rule taking $h=1$.
(b) Find an iterative formula to find square root of N (where N is a positive number) and hence find the square root of 8 correct upto two decimal places.
Q. 5 (a) Apply Gaussian elimination method to solve the following system of equations
$x_{1}+x_{2}+5 x_{3}=-1, \quad 2 x_{1}+4 x_{2}=12, \quad 5 x_{1}-x_{2}+x_{3}=10$.
(b) Using Euler's method, find $y(0.04)$ for the following initial value problem. $y^{\prime}=y, y(0)=1$. Take step size as $h=0.01$.

OR

Q. 5 (a) Solve the following system of equations by Gauss Seidel method.
$10 x_{1}+x_{2}+x_{3}=6, x_{1}+10 x_{2}+x_{3}=6, x_{1}+x_{2}+10 x_{3}=6$.
(b) Use the Runge-Kutta method to solve $\frac{d y}{d x}=-x y^{2}$ for $0 \leq x \leq 1$, subject to $y(0)=2$. Use $h=0.25$ and work for four decimal places.

