Date:13-12-2022

Total Marks:70

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(OLD) EXAMINATION – WINTER 2022

Subject Code:140001

Subject Name:Mathematics-IV

Time:10:30 AM TO 01:30 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	If $x_n = \cos \frac{\pi}{3^n} + i \sin \frac{\pi}{3^n}$, then show that						
		(a) $i(x_1, x_2, x_3,, x_{\infty}) = -1$ and (b) $i(x_0, x_1, x_2,, x_{\infty}) = 1$						
	(b)	Find a real root of the equation $x^3 + 4x^2 - 1 = 0$ by bisection method 0 correct up to two decimal places.						
Q.2	(a)	Find and plot all re	bots of $\sqrt[3]{8}$	Bi				07
	(b)	b) State necessary and sufficient conditions for the function to be analytic. Also Show that $f(z) = z $ is not an analytic function.						
	(1)	OR CY						
	(D)	Show that the function $u(x, y) = 3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic.Find the conjugate harmonic function v .						
Q.3	(a)	Find the bilinear transformation that maps the points $z_1 = -2, z_2 = 0, z_3 = 0'$						
		2 onto the points $w_1 = \infty$, $w_2 = \frac{1}{2}$, $w_3 = \frac{3}{4}$ respectively.						
	(b)	Evaluate $\int_{C} (x - y + ix^2) dz$, where C is along the line joining from $z = 0$ 07						
		to $z = 1$, $z = 1$ to $z > 1 + i$ and $z = 1 + i$ to $z = 0$.						
		OR						
Q.3	(a)	State Cauchy sintegral formula.						
		Also Evaluate $\oint_C \frac{z}{z(z-1)} dz$, where C is a circle $ z = 2$.						
	(b)	Find the Laurent's series expansions of $f(z) = \frac{1}{(z+1)(z+2)}$ valid for 0'						
		(a) $ z < 1$ (b) $1 < z < 3$ (c) $ z > 3$						
04	(9)	Using Newton-Raphson method find a root of the equation $x^3 - 3x - 5 - 0^7$						
2.1	(u)	0 correct up to four decimal places. $3x = 3^{-1} = 0^{-1}$						
	(b)	The population of a town in the census is as given in the data. Estimate the 07						
		population in the year 1996.						
		Year(x)	1961	1971	1981	1991	2001	
		Population(y) (in thousands)	46	66	81	93	101	
<u> </u>		OR						
Q.4	(a)	Compute the integral $I = \int_0^4 (x^3 - 2x^2 + 1) dx$ using Simpson's 1/3 rule 07						
		taking $h = 1$.						

(b) Find an iterative formula to find square root of N (where N is a positive number) and hence find the square root of 8 correct up to two decimal places.

Download all NOTES and PAPERS at StudentSuvidha.com

(a) Apply Gaussian elimination method to solve the following system of Q.5 07 equations

> $x_1 + x_2 + 5x_3 = -1$, $2x_1 + 4x_2 = 12$, $5x_1 - x_2 + x_3 = 10$.

07 (b) Using Euler's method, find y(0.04) for the following initial value problem. y' = y, y(0) = 1. Take step size as h = 0.01.

- (a) Solve the following system of equations by Gauss Seidel method. 07 **Q.5**
 - $10x_1 + x_2 + x_3 = 6$, $x_1 + 10x_2 + x_3 = 6$, $x_1 + x_2 + 10x_3 = 6$. Use the Runge-Kutta method to solve $\frac{dy}{dx} = -xy^2$ for $0 \le x \le 1$, subject 07 **(b)** to y(0) = 2. Use h = 0.25 and work for four decimal places.

tomation suithan con